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Abstract

In this paper, the local time step method is applied to the lattice Boltzmann method (LBM) on non-uniform grid

(generalized form of interpolation supplemented LBM: GILBM) for steady flow simulations. The local time step

method is known to be an effective technique to accelerate the solution to the converged steady state on non-uniform

grid. First, code validation for global time step method is performed by solving flow around a cylinder at low Reynolds

numbers. Our results show good agreement with previous studies. Two-dimensional flow simulations around an airfoil

were performed in order to validate the code using the local time step method and the results are compared with the

global time step solutions. The pressure distribution and the aerodynamic coefficients of global and local time step

results are in good agreement. They are also consistent with the previous studies. At the same time, CPU time required

to obtain the steady-state solutions using the local time step are reduced by 70–80% compared with that using global

time step.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The lattice Boltzmann method (LBM) has been proved to be an promising method in simulating incom-

pressible flow, porous-media flow, and multi-phase flow [1]. Since various modifications have been applied
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to LBM, the accuracy and the efficiency of the simulation has improved compared with the early stage of its

development.

It is important to reduce the computational time in order to use LBM as a practical computational fluid

dynamics (CFD) tool. However, the grid used in the standard LBM, commonly referred to as Lattice

Bhatnagar–Gross–Krook (LBGK) model [2], is restricted to orthogonal grid with equal spacing. In order
to solve high Reynolds number flows with sufficient spatial accuracy, larger computer resources are re-

quired compared with the traditional Navier–Stokes solvers on non-uniform mesh.

Recently, many studies have been dedicated to the extension of the LBM on non-uniform mesh. The

strategies are classified into two groups. The first type is to patch fine orthogonal grid only to the region

where high resolution is required. The adaptive mesh refinement (AMR) technique or composite grid sys-

tem are applied to LBM [3–7]. Although the grid spacing is different between the grids, the algorithm ap-

plied to the each grid is exactly the same as LBGK. A special treatment is implemented only to the

boundary of the grids where the exchange of values between the grids is necessary. The second type is to
use body-fitted grids and has been formulated by many authors [8–15]. Using these methods, flow around

various configurations can be solved. Among these methods, interpolation supplemented lattice Boltzmann

method (ISLBM) [12–14] and characteristic Galerkin finite element method for the discrete Boltzmann

equation (CGDBE) [15] seem to give results without excessive numerical dissipation.

Although the computational time is considerably reduced by placing the grid points to the region

where the high resolution is required, the calculation time is still longer than that by the conventional

incompressible Navier–Stokes solvers, such as marker-and-cell (MAC) method [16] and so on. The time

steps for both LBM and MAC method must satisfy the advection term stability condition, which is called
as Courant–Friedrichs–Lewy (CFL) condition. However, the advection speed used to evaluate the time

step Dt is different. While MAC method uses flow velocity (macroscopic velocity), LBM uses the speed

of the particle, which is the order of the sound speed. If the same grid is used for the both simulations,

the time step defined from the CFL condition becomes inversely proportional to the advection speeds of

the methods. When calculating low Mach number flow with LBM, macroscopic fluid velocity is defined

smaller by one order compared with the sound speed. Thus, the time step used in the LBM simulation

also becomes smaller by one order compared with the MAC method. Even the CPU time required for

one time step is smaller for LBM, the total calculation time becomes several times larger. Further reduc-
tion in CPU time is necessary.

There are requirements in obtaining steady-state solution for incompressible flow simulations. Particu-

larly in aerospace problems, drag prediction is an important issue in designing process and drag force is

often obtained from the steady-state solution. Furthermore, steady-state solution is often used as an initial

condition for unsteady flow calculation, in order to reduce the total computational time. Several ways to

accelerate the solutions to converged state have been proposed using grid refinement [4] and multi-grid

methods [7]. In this paper, we will apply the local time step method [17] to LBM on non-uniform grid

in order to obtain steady-state solution with reduction in computational time. The local time step method
is an effective technique to accelerate the solution to the converged steady state on non-uniform grid. The

local time step method means that each grid point uses a time step, which is based on the local advection

term stability condition. The convergence to the steady-state flow is expected to be accelerated, since larger

time step can be used for larger grid cell. In this study, generalized form of ISLBM is used as LBM solver

on generalized coordinates.

This paper is organized as follows. Section 2 briefly describes the LBGK model. Section 3 presents the

LBM on body-fitted grid. A generalization of the ISLBM [12–14] to arbitrary structured grids is proposed

and is named as generalized form of interpolation supplemented LBM (GILBM). Section 4 presents numer-
ical procedure to apply the local time step method to GILBM. Section 5 presents the computational results

both for global and local time step. Section 6 concludes this paper. All the descriptions made in this paper

are for a two-dimensional plane.
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2. Lattice BGK model

Frequently, the nine-velocity model (2D-9V model) [18] is used for two-dimensional calculations. The

governing equation of LBM, lattice Boltzmann equation (LBE), is described as
fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼ � 1

x
fiðx; tÞ � f eq

i ðx; tÞ½ �; ð1Þ
where i = 0,. . .,8, x ” s/Dt. x is the relaxation time.

The particle velocity vectors set for the 2D-9V model is
c0 ¼ ð0; 0Þ;

ci ¼ c cos
i� 1

2
p

� �
; sin

i� 1

2
p

� �� �
for i ¼ 1; 2; 3; 4;

ci ¼
ffiffiffi
2

p
c cos

i� 5

2
pþ p

4

� �
; sin

i� 5

2
pþ p

4

� �� �
for i ¼ 5; 6; 7; 8;

ð2Þ
where c is the streaming speed of the particle. The reference length L, mean flow velocity U0, reference time

t0( = L/U0), and reference density q0 are used in order to describe the variables in non-dimensional form,

which is the same as that of incompressible Navier–Stokes equations. The LBE consists of collision and

advection steps. By dividing Eq. (1), each step can be described independently as
f �
i ðx; tÞ ¼ fiðx; tÞ �

1

x
fiðx; tÞ � f eq

i ðx; tÞ½ �; ð3Þ

fiðx; t þ DtÞ ¼ f �
i ðx� ciDt; tÞ; ð4Þ
where f �
i ðx; tÞ indicates the post-collision distribution function. The collision term is calculated at position x

according to Eq. (3). Then, the post-collision distribution functions move to the neighboring nodes,
depending on the particle velocity ci as Eq. (4).

The macroscopic variables such as density and velocity in non-dimensional form are obtained as
q ¼
X
i

fi; qua ¼
X
i

fici;a: ð5Þ
The equilibrium distribution functions for the discrete velocities ci are defined as
f eq
i ðx; tÞ ¼ wiq 1þ 3ðci;auaÞ

c2
þ 9ðci;auaÞ2

2c4
� 3u2

2c2

" #
: ð6Þ
The coefficient wi is a constant which depends on the velocity model. The constants for the 2D-9V model

are
w0 ¼ 4=9;

w1 ¼ � � � ¼ w4 ¼ 1=9;

w5 ¼ � � � ¼ w8 ¼ 1=36:

ð7Þ
By applying Taylor and Chapman–Enskog expansions to the LBE, the equation of continuity and Navier–

Stokes equations are derived as
oq
ot

þ oðquaÞ
oxa

¼ 0þOðd2Þ; ð8Þ
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oðquaÞ
ot

þ oðquaubÞ
oxb

¼ �rp þPð1Þ
ab þOðd2Þ þOðM3Þ; ð9Þ
where M = U/c, d is small parameter which is the same order of Dt, and Pð1Þ
ab is the stress tensor for a New-

tonian fluid [19].

The relation between the viscosity and relaxation time for LBGK is m = (1/6)(2x � 1)c2Dt. Thus the

Reynolds number, which is the only parameter for the non-dimensional incompressible Navier–Stokes

equations, is described as
Re ¼ 6

ð2x� 1ÞDtc2 ; ð10Þ
and the pressure becomes
p ¼ q
3
c2 ¼ qc2s ; ð11Þ
where cs � c=
ffiffiffi
3

p
is the sound speed.
3. Generalized form of interpolation supplemented lattice Boltzmann method

3.1. Numerical method for GILBM

In this section, LBGK model on generalized coordinate is proposed based on the idea of ISLBM [12–14].

Since the transformation between physical plane and computational plane must be described by analytical

function for ISLBM, a generalization of ISLBM is necessary to calculate on arbitrary structured grid.

Numerical procedure for general cases is introduced hereafter.
The governing equations (3) and (4) on an orthogonal coordinates are transformed into generalized

coordinates. The physical and computational planes are described as x ” (x1,x2) ” (x,y) and

n ” (n1,n2) ” (n,g), respectively.
The transformation of the collision term equation into generalized coordinates is simple, because only

information local to the current grid node is required. Thus, by replacing x in Eq. (3) to n, collision term

calculation on generalized coordinates is obtained as
f �
i ðn; tÞ ¼ fiðn; tÞ �

1

x
fiðn; tÞ � f eq

i ðn; tÞ½ �; ð12Þ
where f �
i ðn; tÞ indicates the post-collision distribution function.

After the collision step, the advection term calculation is performed. Transformation of the advection

term equation requires some discussions. Fig. 1 shows the c1 = c(1,0) vectors on the physical and compu-
Fig. 1. c(1,0) vectors on physical plane and computational plane.
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tational planes, respectively. They are constant vectors on the physical plane, but the contravariant veloc-

ities ~cið� ~ci; aÞ defined as
~ci;a ¼ ci;b
ona
oxb

; ð13Þ
on the computational plane are not constant. Consequently, integration of the contravariant velocity

over time step Dt must be performed to calculate the position where the distribution function comes

from.

The transformed equation of Eq. (4) becomes
fiðn; t þ DtÞ ¼ f �
i ðn� Dnup;i; tÞ; ð14Þ
where
Dnup;i ¼
Z Dt

0

dni ¼
Z Dt

0

~ci dt: ð15Þ
In order to solve Eq. (14) numerically, numerical accuracy of the discretization methods are important. The

numerical errors must be suppressed to the same order of the truncation error of LBE when deriving Na-

vier–Stokes equations. The estimation of the contravariant velocity ~ci at each node, the integration scheme
applied to Eq. (15), and the interpolation method applied to the right-hand side of Eq. (14) are important to

suppress numerical errors.

First, for the calculation of the contravariant velocities at each node, the estimation of the metrics (e.g.

nx ” on/ox) is necessary
nx ny
gx gy

" #
¼ J

yg �xg
�yn xn

� �
; ð16Þ
where the Jacobian J is defined as
J ¼ xnyg � xgyn: ð17Þ
The central-differences are used for the calculation of the derivatives, such as xn. Applying the results of Eq.
(16) to Eq. (13), the contravariant velocities at the grid nodes are obtained with second-order accuracy in

space.

Second, the integration of the contravariant velocity over the time step Dt is performed. The integration

of the contravariant velocity using first-order Euler explicit integration becomes
Dnup;i ¼ Dt~ciðnÞ þOðDt2Þ: ð18Þ
However, the numerical accuracy cannot be maintained using first-order Euler explicit integration.

The two-step Runge–Kutta method is necessary when the grid is clustered around the body and is

calculated as
Dnð1Þup;i ¼
1

2
Dt~ciðnÞ : 1st� step; ð19Þ

Dnup;i ¼ Dt~ciðn� Dnð1Þup;iÞ þOðDt3Þ : 2nd� step: ð20Þ
The LBE on generalized coordinate can be described as
fiðnþ Dnup;i; t þ DtÞ ¼ fiðn; tÞ �
1

x
fiðn; tÞ � f eq

i ðn; tÞ½ �; ð21Þ
by simply combining Eqs. (12) and (14). By applying the Taylor expansion to the above equation,
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ofi
ot

þ �ci;a
ofi
ona

þ 1

2

o

ot
þ �ci;a

o

ona

� �2

fiDt þOðDt2Þ ¼ � 1

xDt
fi � f eq

ið Þ ð22Þ
is derived, where �ci;a � Dnup;i=Dt. The stress tensor term of the Navier–Stokes equation is derived from the
third term in LHS of Eq. (22), and the order of this term is O(Dt). When first-order Euler explicit integra-

tion is used for the estimation of Dnup,i, the leading error term of �ci;a is O(Dt). The error from the second

term becomes the same order from the third term in LHS of Eq. (22). This indicates that using first-order

Euler explicit integration is insufficient because the error from the second term affects the third term. There-

fore, the integration of the contravariant velocities must be higher than second order, in order to suppress

the leading error term of �ci;a to O(Dt2). Some results are shown later to confirm this point.

The calculation of the contravariant velocity and its integration are performed only once at the beginning

of the simulation, since these values do not change during the simulation. Although extra memory is required
to store the integrated contravariant velocities in an array, nearly 50% CPU time is saved each time step.

Third, the interpolation function is necessary to calculate the right-hand side of Eq. (14). Also the same

interpolation function is used in Eq. (20). In both equations, the value between the grid points is required. It

is pointed out in previous study [13] that using a second-order scheme is important to suppress numerical

dissipation. Second-order upwind quadratic interpolation is used in the same manner as ISLBM. For two-

dimensional case, the interpolation function gi becomes,
giðn� Dnup;iÞ ¼ ai;0;2ðai;0;1gi;00 þ ai;1;1gi;10 þ ai;2;1gi;20Þ
þ ai;1;2ðai;0;1gi;01 þ ai;1;1gi;11 þ ai;2;1gi;21Þ
þ ai;2;2ðai;0;1gi;02 þ ai;1;1gi;12 þ ai;2;1gi;22Þ

�
X2
m¼0

X2
l¼0

ai;m;2ai;l;1gi;lm; ð23Þ
where the gi,lm are the stencil as shown in Fig. 2 depending on the position of n-Dnup,i. The coefficients be-

fore gi,lm are
ai;0;a ¼
1

2
ðjDnup;i;aj � 1ÞðjDnup;i;aj � 2Þ;

ai;1;a ¼ �jDnup;i;ajðjDnup;i;aj � 2Þ;

ai;2;a ¼
1

2
jDnup;i;ajðjDnup;i;aj � 1Þ;

ð24Þ
Fig. 2. Stencil used for the interpolation function.
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where the grid spacing is Dn1 = Dn2 = 1. Since multi-dimensional interpolation function is used, the present

algorithm becomes exactly the same as LBGK model, if the calculation is performed on orthogonal grid

with equal spacing. The time step Dtg for the present method can be given from the Courant–Fried-

richs–Lewy (CFL) condition, as it is given in traditional CFD methods
Dtg ¼ kmin
i;a;j;k

1

~ci;ajj;k

" #
; ð25Þ
where k is the CFL number (0 < k 6 1) and (j,k) is the coordinate of grid point on the computational do-

main. Since Dtg satisfies the numerical stability condition at every computational points, it is called global
time step. It is pointed out by Lee and Lin [20] that CFL condition must be satisfied in order to perform

stable calculation.

The set up of the parameters used in the calculation is summarized as follows:

1. Set the following value; Reynolds number (Re), U/c( = 0.1), k( = 1.0).

2. Calculate the contravariant velocity; Eq. (13).

3. Calculate the global time step; Eq. (25).

4. Calculate the relaxation time; Eq. (10).

3.2. Boundary conditions of GILBM

In this study, suitable wall boundary condition for the generalized coordinates is obtained based on the

idea of the incompressible Navier–Stokes solvers. The wall boundary condition for the incompressible Na-

vier–Stokes solvers is defined as follows. Since the normal gradient of the pressure vanishes at the wall

boundary, pressure on the wall is extrapolated from the node in the computational domain next to the wall
boundary node. In LBM, similar expression for density is obtained since p � q (see Eq. (11)). The flow

velocity at the wall is given as wall velocity.

From the boundary condition of the macroscopic variables (q,u,v), the boundary condition of the dis-

tribution function is calculated. If we assume fijbc ¼ f eq
i , distribution function can be calculated using

Eq. (6). However, this assumption is not accurate enough since viscosity effect appears in the first order

of non-equilibrium term. The distribution function is estimated up to the first order of non-equilibrium

using the Chapman–Enskog expansion as
fijbc ¼ f eq
i þ f ð1Þ

i þ � � �

¼ f eq
i 1� xDt

3Ui;aUi;b

c2
� dab

� �
oua
oxb

� �
þOðd2Þ;

ð26Þ
where Ui,a = ci,a � ua, d is small parameter, and dab is Kronecker delta. The derivation of above equa-

tion is described in Appendix A. The spatial derivatives of the velocity oua/oxb in Eq. (26) are calcu-

lated as
oua
oxb

¼ oua
onc

onc
oxb

: ð27Þ
The first term in right-hand side (oua/onc) is calculated using second-order one-sided finite difference
method. The second term (onc/oxb) is the metrics at the wall boundary, which is already calculated.
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4. GILBM using local time step method

The calculation time is considerably reduced by using GILBM compared with that on orthogonal grid,

because grid points can be significantly reduced at region far away from the wall boundary. However, the

total calculation time is still longer than that by the conventional incompressible Navier–Stokes solvers,
such as the MAC method [16]. The time step for the GILBM and MAC methods are defined from the

CFL condition. While the macroscopic fluid velocity U is used as the advection speed in the MAC method,

GILBM uses the speed of the particle c, which is on the order of the sound speed. If the same grid is used

for the both simulations, the time step defined from CFL condition becomes inversely proportional to the

advection speeds of the methods. Thus, the time step used in the GILBM simulation is approximately 10%

(when U/c = 0.1) of that in the MAC method. Although the calculation time required for one time step is

smaller than MAC method, the total calculation time of GILBM becomes several times larger. Further

reduction in the calculation time is required.
Unlike the LBGK model, the grid size for GILBM is not uniform. Thus, a local time step method [17]

can be applied to GILBM in order to obtain steady-state solution with reduction in CPU time. For larger

grid sizes, a larger time step, which satisfies the CFL condition, can be used. The time step is defined locally

from the local CFL condition as
Dtljj;k ¼ kmin
i;a

1

~ci;ajj;k

" #
; ð28Þ
where k is the CFL number. This time step Dtl|j,k is called local time step. Having different time step sizes for

each grid point corresponds to a calculation of
fiðnþ ~ciDtljj;k; t þ Dtljj;kÞ � fiðn; tÞ ¼ � 1

xajj;k
fiðn; tÞ � f eq

i ðn; tÞ½ �: ð29Þ
In order to describe the constant Reynolds number, the relaxation time xa|j,k is defined locally as
xajj;k ¼
3

ReDtljj;kc2
þ 1

2
; ð30Þ
using the local time step Dtl|j,k. Since Re, Dtl and c are all positive values, s > 1/2 is also maintained when the

local time step method is used.

By applying the Taylor and Chapman–Enskog expansions to Eq. (29), the following equations, which

are similar to the equation of continuity and the Navier–Stokes equations on physical plane, are derived as
1

ajj;k
oq
ot

þ oðquaÞ
oxa

¼ 0þOðd2Þ; ð31Þ

1

ajj;k
oðquaÞ
ot

þ oðquaubÞ
oxb

¼ �rp þPð1Þ
ab þOðd2Þ þOðM3Þ; ð32Þ
where a|j,k ” Dtl|j,k/Dtg is the acceleration factor, and Dtg is a global time step defined by Eq. (25). There are

two differences between the above equations and Eqs. (8) and (9). The first difference is the introduction of

the inverse of the acceleration factor 1/a|j,k to the time derivative term. If a steady state is found for the

system above, the time derivative term must be zero irrespective of the value of the acceleration factor
a|j,k. Therefore, a steady-state solution of Eq. (29) becomes that of the original equations (Eq. (1)) as well.

The second difference appears in d. Since the leading error term d is proportional to time step Dt, slight
difference in the results should be observed. However, this error is negligible and we will confirm this point

by checking the calculated results in the following section.
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Numerical procedure to calculate with local time step is described from now on. When time step

and relaxation time vary between grid points, modification must be applied to the distribution func-

tions. The similar discussion is made in the previous studies [3,4] when exchange between coarse

and fine grid system is necessary, since the time step and relaxation time differs between the grid

systems.
The distribution function, which is described up to the first-order non-equilibrium term, can be written

as
fi ¼ f eq
i þ f ð1Þ

i þ � � �

¼ f eq
i � xajj;kDtljj;k

1

ajj;k
of eq

i

ot
þ ci;a

of eq
i

oxa

 !
þOðd2Þ ð33Þ
for the accelerated system. By assuming a steady-state solution, the time derivative term converges to zero.

The first-order non-equilibrium term f ð1Þ
i is linear to the product of relaxation time xa|j,k and time step

Dtl|j,k. This product becomes a function of a|j,k as
xajj;kDtljj;k ¼
3

Rec2
þ
ajj;kDtg

2
: ð34Þ
This indicates that f ð1Þ
i depends on the acceleration factor a|j,k. For example, in order to calculate the advec-

tion step in the two-dimensional GILBM, eight points to the upwind side are necessary for the construction
of the interpolation function. See Fig. 2 once again which shows the stencil of the distribution function fi
corresponding to the ci. Now focusing on point A, we will calculate the value fi for the next time step. Blm

represents the points on the upwind side, and B represents an arbitrary point of Blm. The time step and

relaxation time at points A and B are DtA, xA, DtB, and xB, respectively. In order to construct the inter-

polation function for point A (see Eq. (23)), the distribution functions at points B must be re-estimated

to values corresponding to DtA and xA. This re-estimation is necessary because the first order of non-

equilibrium term depends on a|j,k as shown in Eq. (34).

The re-estimation is applied to fi|B before the collision term calculation and the re-estimated distribution
function ~f ijB is obtained as
~f ijB ¼ f eq
i jB þ ðfijB � f eq

i jBÞ
xADtA
xBDtB

; ð35Þ
where fijB � f eq
i jB ’ f ð1Þ

i jB. After the re-estimation, the collision term calculation using the relaxation time

at point A is performed. The re-estimation and collision calculation described in one equation is written as
~f
�
i jB ¼ ~f ijB �

1

xA
ð~f ijB � f eq

i jBÞ

¼ f eq
i jB þ ðfijB � f eq

i jBÞ
ðxA � 1ÞDtA

xBDtB
; ð36Þ
where ~f
�
i jB is the re-estimated post-collision distribution function at point B. This calculation is applied

to the all of the grid points at the upwind side of point A. On the other hand, at point A, re-estimation

is unnecessary and only collision calculation is performed. However, the same equation can be use for
point A, since Eq. (36) can be reduced to simple collision equation by substituting xB = xA and

DtB = DtA.
After the re-estimation and the collision calculation, the advection term calculation is performed using

the interpolation function, Eq. (23). The overall procedure to calculate using the local time method is

shown in Fig. 3. The present local time step method can be applied to other types of LBM formulated

on non-uniform grid systems for the purpose of reducing the computational time.



Fig. 3. Calculation procedure using local time step method.
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5. Computational results

5.1. Flow around a circular cylinder

The numerical simulations of two-dimensional flow around a circular cylinder are performed. The Reyn-

olds number is based on the free stream velocity and the diameter of the circular cylinder. The grid used in

the simulation is shown in Fig. 4. The grid type is an O-grid, and the resolution is 181 · 241. The minimum

grid spacing is defined by Dxmin ¼ 0:1=
ffiffiffiffiffiffi
Re

p
. The circular outer boundary is located at a distance equal to 20

times the diameter of the cylinder. The Chapman–Enskog and non-reflecting boundary conditions are ap-

plied to the wall and to the outer boundary, respectively. A periodic boundary condition is applied at the

grid-cut in the wake. The free stream velocity is defined as U1/c = 0.1. The uniform flow or the potential
flow solutions can be used as an initial condition for the simulations. For the present calculations, latter

condition was used in the same manner as He et al. [12].

At low Reynolds numbers (Re = 10, 20 and 40), this calculation is often carried out as a test problem to

validate a flow solver on body-fitted coordinates. When the Reynolds number is less than the critical Reyn-

olds number (Recr � 47), a steady recirculating region appears behind the circular cylinder. Convergence to

the steady-state solution is evaluated by measuring the maximum of the ratio of the relative velocity change

d, defined as
d ¼ Max
juðt � DtÞ � uðtÞj

juðtÞj 6 1:0� 10�7: ð37Þ



Fig. 4. Body-fitted grid used in circular cylinder flow simulations.Fig. 5. Pressure contours and streamlines of cylinder flow at

Re= 10, 20, and 40 

T. Imamura et al. / Journal of Computational Physics 202 (2005) 645–663655



656 T. Imamura et al. / Journal of Computational Physics 202 (2005) 645–663
The above calculation is applied only to nodes where |u(t)|P Max|u(t)| · 0.01 is satisfied in order to avoid

division by zero.

Fig. 5 shows the pressure contours and streamlines at Re = 10, 20, and 40. A pair of vortices is observed

behind the circular cylinder. As the Reynolds number increases, the length of the recirculating region L and

the separation angle hs (see Fig. 5(c)) increase.
The aerodynamic coefficients and geometrical parameters at low Reynolds number are listed in Table 1

and compared with previous studies [11,12,21,22]. The results by Mei and Shyy [11] were obtained by

FDLBM, and the results by He et al. [12] were obtained by ISLBM. Also, the results by Nieuwstadt

and Keller [21] and Dennis and Chang [22] were obtained by a finite-difference method.

The drag coefficient Cd and the pressure coefficient Cp are defined as
Table

Comp

Re

10

20

40
Cd ¼
F x

1
2
qU 2

; Cp ¼
ðp � p1Þ

1
2
qU 2

; ð38Þ
where Fx is the force component which is parallel to the mean flow. Fx is calculated by the stress tensor and

normal direction of the body surface.

The drag coefficients obtained by the present method show similar trends relative to the values obtained

by finite-difference methods. The stagnation pressure coefficient Cp,s, and the base pressure coefficient at the

rear stagnation point Cp,r, compare well with the results of previous studies. The separation angle is slightly

smaller than the results obtained by finite-difference methods. However, the length of the recirculating re-

gion, normalized by the radius, and the separation angle agree with other studies for all three Reynolds

numbers.

5.2. Flow around a NACA0012 airfoil

Before we begin the discussion of the local time step method, another validation of the generalized form

of ISLBM (GILBM) using the global time step is carried out. A flow around a NACA0012 airfoil [23] was

performed at laminar flow condition with Re = 500 and an angle of attack (AOA) of 0 [degree]. A body-

fitted grid (C-grid) is used in the present simulations, and the resolutions are 257 · 65 and 373 · 141.
1

arison with previous studies of aerodynamic coefficients and geometrical parameters for cylinder flow at low Reynolds number

Author Method Cd Cp,s �Cp,r L/(0.5D) hs

Dennis and Chang N.S. 2.846 1.489 0.742 0.53 29.6

Nieuwstadt and Keller N.S. 2.828 1.500 0.692 0.434 27.96

He et al. ISLBM 3.170 1.393 0.687 0.474 26.89

Mei and Shyy FDLBM – – – 0.498 30.0

Present work GILBM 2.848 1.403 0.733 0.478 26.0

Dennis and Chang N.S. 2.045 1.269 0.589 1.88 43.7

Nieuwstadt and Keller N.S. 2.053 1.274 0.582 1.786 43.37

He et al. ISLBM 2.152 1.233 0.567 1.842 42.96

Mei and Shyy FDLBM – – – 1.804 42.1

Present work GILBM 2.051 1.251 0.589 1.852 43.3

Dennis and Chang N.S. 1.522 1.144 0.509 4.69 53.8

Nieuwstadt et al. N.S. 1.550 1.117 0.554 4.357 53.34

He et al. ISLBM 1.499 1.113 0.487 4.490 52.84

Mei et al. FDLBM – – – 4.38 50.12

Present work GILBM 1.538 1.156 0.514 4.454 52.4



Fig. 6. Pressure contours and streamlines around a NACA0012 airfoil at Re = 500, AOA = 0 [degree].
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Two different minimum grid sizes normal to the wall boundary are used as 0:1=
ffiffiffiffiffiffi
Re

p
¼ 4:5� 10�3 and

0:01=
ffiffiffiffiffiffi
Re

p
¼ 4:5� 10�4 in order to clarify the effect of the minimum grid size. The outer boundary is located

at 20 times of the chord length. The ratio of macroscopic velocity of the far field to the particle velocity is

defined as U1/c = 0.1 following the most of the previous studies. Also, we have performed some test cal-

culation varying U/c and around 0.1 was the optimum value considering the numerical error and the com-

putational time. The present result is compared with the numerical simulations using CFL3D and
PowerFLOW [24,25]. CFL3D is a Navier–Stokes solver using the finite-volume formulation on generalized

coordinates, and PowerFLOW is a commercially available LBM solver using orthogonal grids. Conver-

gence to steady state is confirmed by Eq. (37).

First of all, the pressure contours and streamlines obtained by the present method is shown in Fig. 6. The

symmetric flow pattern is observed. The dependence of the aerodynamic coefficients on the grid resolution

and the minimum grid spacing is studied in detail as shown in Table 2. The aerodynamic coefficients are

compared with those of the other two methods. The drag coefficient obtained from the present method

using the highest-resolution grid is about 0.9% smaller than that of CFL3D. As the resolution becomes
higher, the drag coefficient obtained from the present method converges to that by CFL3D. On the other

hand, PowerFLOW result steps away from the other two results due to insufficient resolution at the bound-

ary, although resolution has increased. Also lift coefficient Cl shows excellent symmetry of the calculation in

all cases.

In order to validate the accuracy of the scheme, three additional computation is performed [26]. We

chose highest-resolution grid (373 · 141 grid with Dxmin = 4.5e � 4, grid C) as a reference grid, and made

two grid (A and B) with different resolutions which are listed in Table 3. The ratio of the grid size between

the different grid is not 2 due to the restriction in computational resources as it is usually required in the
accuracy estimation [26]. Thus, evaluation method proposed by Roache [27] when ratio of the grid size
Table 2

Summary of results for flow around a NACA0012 wing section

Resolution (on wing) Dxmin Cd Cl

Present work 257 · 65 (173) 4.5e � 3 0.1682 1.0e � 13

373 · 141 (251) 4.5e � 3 0.1672 1.0e � 13

257 · 65 (173) 4.5e � 4 0.1736 1.0e � 13

373 · 141 (251) 4.5e � 4 0.1725 1.0e � 13

PowerFLOW 159,060 (828) 1.2e � 3 0.1717 0.227e � 3

418,800 (1275) 7.8e � 4 0.1807 �0.211e � 3

CFL3D 257 · 65 – 0.1762 0.115e � 6

373 · 141 1.2e � 4 0.1741 �0.538e � 5



Table 3

Grid convergence study of NACA0012

Resolution (on wing) Dxmin Grid size ratio Cp,s

A 249 · 95 (167) 6.7e � 4 0.67 1.3198

B 323 · 123 (217) 5.2e � 4 0.87 1.2606

C 373 · 141 (251) 4.5e � 4 1.00 1.2389
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is not 2 is used here. If we assume the exact solution as U, and solution on grid size of h as Uh, U = Uh + ahp

should be satisfied where a is a constant and p is the order of the scheme. By comparing the results by three

different grid resolutions, exact solution can be eliminated as
UhA þ aðhAÞp ¼ UhB þ aðhBÞp; ð39Þ

UhB þ aðhBÞp ¼ UhC þ aðhCÞp; ð40Þ

where UhA ; . . . ;UhC and hA,. . .,hC are the solution and the grid size for grids A–C, respectively. Since the
ratio of the grid size between the different grids is not 2, the accuracy p is calculated recursively by
ðhBÞp � ðhAÞp

ðhCÞp � ðhBÞp
¼ UhA � UhB

UhB � UhC

: ð41Þ
The pressure at the stagnation point is compared to calculate the accuracy of the scheme, which is also

listed in Table 3. Since all of the grids have a grid point on the stagnation, the effect of the additional inter-

polation does not appear when comparing between the different grids. From this analysis, the accuracy of
the current code is p = 1.97, which is nearly 2. This shows that current scheme has second order of accuracy.
U

V

y/
c

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

-0.04 -0.02 0 0.02 0.04

0.1

0.2

U (GILBM+RK)
U (GILBM+Euler)
U (CFL3D)
V (GILBM+RK)
V (GILBM+Euler)
V (CFL3D)

Fig. 7. Comparison of the boundary layer profile using different integration methods.
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As mentioned in the previous section, the effect of the numerical method in order to integrate the con-

travariant velocity, Eq. (15), is validated with this problem. The boundary layer profile at 75% chord is

shown in Fig. 7. For both U and V distributions, the results using Euler integration differ from the other

two results. In particular, the U distribution shows that the result calculated using Euler integration makes

the boundary layer thinner compared with that obtained using the two-step Runge–Kutta method and
CFL3D. Consequently, the drag coefficient Cd obtained using Euler integration become 0.2650, which is

much higher than that obtained in the previous studies (around 0.17). In order to maintain the accuracy

around the wall boundary, where the grid is clustered, the integration method applied to Eq. (15) must

be a second-order scheme.

5.3. Acceleration using the local time step method

In this section, the local time step method is applied to GILBM and the same problem is solved using the
same grid. The objective of the present calculation is to (1) compare the results using the local and global

time step and check whether both results are the same, (2) see the reduction in calculation time. The
Fig. 8. Pressure distribution of NACA0012 flow with Re = 500, AOA = 0 [degree].

Fig. 9. Residual and drag coefficient history for NACA0012 calculation (257 · 65).
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calculations are performed on two grids, 257 · 65 and 372 · 141, in order to investigate the effect of the grid

dependency. The minimum grid size is defined as 0:01=
ffiffiffiffiffiffi
Re

p
. All of the results used in this section are cal-

culated using single CPU PC (Pentium 4, 2 GHz) in order to compare the CPU time.

Fig. 8 shows the pressure contours using 257 · 65 grid. The pressure contour with line is the result cal-

culated using local time step method, and that drawn with dashed line is the result calculated using global
time step method. The excellent agreement is observed in the pressure contour.

Figs. 9 and 10 show the residual and Cd history of the present calculation. Figs. 9 and 10 correspond to

the grid sized of 257 · 65 and 372 · 141, respectively. Every calculation is performed until Eq. (37) is sat-

isfied and in both of the figures, Cd converge to constant value.

Table 4 lists the aerodynamic coefficients together with time step and CPU time required to satisfy the

convergence criterion Eq. (37). There is a slight difference in Cd between the results by using global and

local time step methods. For grid resolution of 257 · 65, the difference is 1.3%. However, this difference

becomes smaller (0.3%) for grid resolution of 372 · 141. The lift coefficients Cl are maintained to almost
0 for all cases. From these facts, the results obtained using the local time step method is the same as that

using the global time step method. Subsequently, we will focus on the CPU time listed in Table 4. The com-

putational quantity increases over 20% per step when the local time step method is used. This increase is

caused by the re-estimation procedure. Thus, the CPU time reduction ratio is smaller than the reduction

in time step. Also, the reduction ratio for 257 · 65 grid is smaller than that of 372 · 141 grid, because
Fig. 10. Residual and drag coefficient history for NACA0012 calculation (372 · 141).

able 4

omparison of aerodynamic coefficients and computational time

esolution: 257 · 65 372 · 141

ethod: GTS LTS GTS LTS

d 0.17357 0.17135 0.17247 0.17196

d 0.17357 0.17135 0.17247 0.17196

l 1.0e � 13 1.0e � 13 1.0e � 13 1.0e � 13

ime step 799,300 (1) 118,980 (0.15) 863,240 (1) 171,440 (0.20)

PU time (s) 29,518 (1) 5354 (0.18) 103,268 (1) 27,866 (0.27)
T

C

R

M

C

C

C

T

C
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the difference of minimum and maximum grid size is larger in the former case. The time step and CPU time

are reduced by 70% to over 80% for the present cases.
6. Conclusions

The local time step method was applied to the Generalized form of ISLBM (GILBM), in order to obtain

steady-state solutions with reduction in CPU time. The time step is defined locally from the local advection

term stability.

First, code validation for global time step method was performed by solving flow around a cylinder at low

Reynolds numbers. Our results show good agreement with previous studies. Two-dimensional flow around

an airfoil was simulated in order to validate the present code. First, the global time step results were compared

with the previous study in order to validate the present code. The excellent agreement was confirmed with the
CFL3D results, and the importance of the estimation of the contravariant velocity is clarified. Second, the

results obtained by the local time step method were compared with the global time step solutions, and its

accuracy was confirmed. Also, the CPU times are reduced by 70–80% in all cases. Since the reduction in

CPU time depends on the flow condition and grid configurations, it is not necessarily appropriate to suggest

that the magnitude of the CPU time reduction is the same in other general cases. However, we have confirmed

the effect of the local time step method with relatively small Reynolds numbers. As the Reynolds number be-

comes larger, the difference of minimum and maximum grid size becomes larger, and the reduction in CPU

time is expected to become larger. Thus, the local time step method is an effective method on non-uniform
mesh to accelerate the solution to the converged state in wide range of Reynolds numbers.
Appendix A. Distribution function including first-order non-equilibrium term

If we apply the Chapman–Enskog expansion to the lattice Boltzmann equation [28], the first order of

non-equilibrium is described in non-dimensional form as
f ð1Þ
i ¼ �xDt

of eq
i

ot
þ ci;a

of eq
i

oxa

� �
: ðA:1Þ
The equilibrium distribution function of LBM is described by Eq. (6). The time and spatial derivatives of

the equilibrium distribution function of Eq. (A.1) are replaced by the derivatives of the macroscopic var-

iables as
of eq
i

ot
¼ of eq

i

oq
oq
ot

þ of eq
i

oua

oua
ot

; ðA:2Þ

of eq
i

oxa
¼ of eq

i

oq
oq
oxa

þ of eq
i

@ub

oub
oxa

; ðA:3Þ
and the equilibrium distribution function differentiated by the macroscopic variables are
of eq
i

oq
¼ 1

q
f eq
i ; ðA:4Þ

of eq
i

oub
¼ wiq

3

c2
ðci;b � ubÞ þ

9ðci;aui;aÞci;b
c4

� �

’ 3Ui;b

c2
f eq
i ; ðA:5Þ
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where Ui,b = ci,b � ub. Terms of a higher order than u2 are ignored. The equations of continuity and the

conservation law of momentum eliminate the time derivative of the macroscopic variables as
oq
ot

¼ � oqua
oxa

; ðA:6Þ

oua
ot

¼ �ub
oua
oxb

� 1

q
op
oxa

: ðA:7Þ
Substituting Eqs. (A.2)–(A.7) into Eq. (A.1), first order of non-equilibrium is given from the macroscopic

variables as
f ð1Þ
i ¼ �xDtf eq

i

3Ui;aUi;b

c2
� dab

� �
oub
oxa

: ðA:8Þ
Finally, the non-dimensional distribution function, including first order of non-equilibrium is described

by the macroscopic variables.
fi ¼ f eq
i þ f ð1Þ

i

¼ f eq
i 1� xDt

3Ui;aUi;b

c2
� dab

� �
oua
oxb

� �
: ðA:9Þ
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